
BILINEAR FORMS AND THE ADJOINT OF A LINEAR MAP

KEATON QUINN

1. The Adjoint of a linear map

Let V be a real vector space and V ∗ its dual. Suppose we have a linear map ϕ :
V → V ∗, then we can define a bilinear form on V by B(x, y) = ϕ(x)(y). Conversely,
given a bilinear form we can define a mapping from V → V ∗ by ϕ(x) = B(·, x). We
say a bilinear form is non-degenerate if the associated ϕ is injective. For a finite
dimensional vector space, if we have a non-degenerate bilinear form, then we have
a canonical identification of V with its dual space V ∼= V ∗ via the associated map
ϕ.

Now, given two vector spaces V and W and a linear map A : V → W between
them, we have an associated map A∗ : W ∗ → V ∗, called the dual of A, which pulls
back functionals toX. That is, A∗ is defined by A∗(f) = f◦A for f ∈W ∗. However,
if we have non-degenerate bilinear forms on both V and W we get isomorphisms
ϕ : V → V ∗ and ψ : W → W ∗. How does A∗ behave under these identifications?
We have the diagram below; define A† = ϕ−1 ◦A∗ ◦ψ so that it commutes. As we’ll
see, the operator A† will be the adjoint (with respect to the bilinear forms).

W

W ∗

V

V ∗

ψ

A†

ϕ

A∗

Theorem 1.1. Let BV and BW be non-degenerate bilinear forms on V and W
respectively. Define A† = ϕ−1 ◦ A∗ ◦ ψ, where ϕ and ψ are the isomorphisms
associated to the bilinear forms. Then for v ∈ V and w ∈W

BW (Av,w) = BV (v,A†w)

Proof. The definition of A† can be rewritten as commutativity of the above diagram:
A∗ ◦ ψ = ϕ ◦A†. Take w ∈W ,

ψ(w) ◦A = A∗(ψ(w)) = (A∗ ◦ ψ)(w)

= (ϕ ◦A†)(w) = ϕ(A†w).

Now evaluate on v ∈ V :

BW (Av,w) = ψ(w)(Av) = (ψ(w) ◦A)(v)

= ϕ(A†w)(v) = BV (v,A†w),
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as desired. �

Can we find the representation of A† in coordinates? Indeed we can. Let’s first
fine the matrix representation of the map ϕ associated to a bilinear form B with
respect to a basis E1, . . . , En for V and the dual basis E∗1 , . . . , E

∗
n for V ∗.

Lemma 1.2. The matrix representation of ϕ in the basis E1, . . . , En and the cor-
responding dual basis is [ϕ] = (B(Ei, Ej)).

Proof. We can compute

ϕ(Ej) =

n∑
i=1

ϕijE
∗
i

and so B(Ei, Ej) = ϕ(Ej)(Ei) = ϕij . �

This [ϕ] is called the matrix representation of B and will will now denote it
by Q = (qij) = (B(Ei, Ej)). An immediate consequence of this is that Q is an
invertible matrix since ϕ is an isomorphism. The following lemma provides a useful
expression for a bilinear form in coordinates.

Lemma 1.3. If E1, . . . , En is a basis for V and qij = B(Ei, Ej) then for Q = (qij)
we have

B(x, y) = [x] ·Q [y] ,

where [·] is the coordinate representation with respect to the relevant basis.

Proof. This follows from computation: write x =
∑

i x
iEi and y =

∑
j y

jEj , then

B(x, y) = B

 n∑
i=1

xiEi,

n∑
j=1

yjEj

 =

n∑
i,j=1

xiyjB(Ei, Ej) =

n∑
i,j=1

xiyjqij .

However,

Q [y] =

n∑
j,k=1

yjqkj [Ek]

so that

[x] ·Q [y] =

n∑
k,j=1

xiyjqkj [Ei] · [Ek] =

n∑
i,j=1

xiyjqij

since the coordinate representations of the Ei are orthogonal.
�

The preceeding arguments all work for W with its bilinear form. We can now
compute the coordinate representation of the adjoint A†. First we do the simple
case of Rn with the dot product. Here the adjoint is the transpose.

Lemma 1.4. Let A : Rn → Rn be linear, then in the standard basis we have
[A†] = [A]t.

Proof. We note for a linear map L that Lij = ei · Lej . Therefore,

A†ij = ei ·A†ej = Aei · ej = ej ·Aei = Aji.

�

Now, for the general case.
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Theorem 1.5. In a basis E1, . . . , En for V and F1, . . . , Fm for W , the adjoint A†

has the representation

[A†] = Q−1[A]tP,

where Q and P are the matrix representations of BV and BW , respectively.

Proof. We have from the previous lemmas that

[v] ·Q
[
A†
]

[w] = BV (v,A†w)

= BW (Av,w) = [A] [v] · P [w] = [v] · [A]
t
P [w] .

This is true for all v and w, so Q
[
A†
]

= [A]
t
P and the result follows.

�

This was all under the assumption that our vector spaces were real. Adjoints on
a complex vector space typically include conjugation; for example, a complex inner
product is not bilinear but hermitian. Hence we don’t usually have a canonical
isomorphism between our vector spaces and their duals. More care is needed in
this case.

2. Automorphism of bilinear forms

Let V and W be two vector spaces with non-degenerate bilinear forms BV and
BW , respectively. What are morphisms between spaces like this? That is, what are
the functions f : V →W that respect the bilinear forms?

Theorem 2.1. Let f : V →W be a surjective function such that

BW (f(x), f(y)) = BV (x, y),

then f is linear and an isomorphism.

Proof. We compute

BW (f(αx+ βy)− αf(x)− βf(y), w)

= BW (f(αx+ βy), w)− αBW (f(x), w)− βBW (f(y), w).

Since f is surjective, there is a z ∈ V such that f(z) = w. So our calculation
becomes

BW (f(αx+ βy)− αf(x)− βf(y), w)

= BW (f(αx+ βy), f(z))− αBW (f(x), f(z))− βBW (f(y), f(z))

= BV (αx+ βy, z)− αBV (x, z)− βBV (y, z)

= 0.

Since this is zero for all w, by non-degeneracy we get

f(αx+ βy)− αf(x)− βf(y) = 0.

So f is linear. It is already surjective so if we can show it’s injective it will be an
isomorphism. But this follows from similar reasoning: suppose f(x) = 0, then

BV (x, z) = BW (f(x), f(z)) = 0.

Since this is true for all z we get x = 0 by non-degeneracy.
�
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The previous Theorem allows us to restrict our attention to linear isomomor-
phisms. We define the pullback of a bilinear form B similarly to how we defined
the dual of a linear map. That is, if A : V → W is linear then we get a map
A∗ : W ∗ ⊗W ∗ → V ∗ ⊗ V ∗ by A∗B(x, y) = B(A(x), A(y)).

Let’s specialize to V = W and BV = BW = B. Define Aut(B) to be

Aut(B) = {A : V → V | A∗B = B} = {A : V → V | B(A(·), A(·)) = B(·, ·)} ,
the set of all B-automorphisms of V . Since Id ∈ Aut(B) and A ∈ Aut(B) implies
A−1 ∈ Aut(B) we get Aut(B) is a group under composition. So Aut(B) ≤ Aut(V ).

If we take B to be the dot product on Rn then Aut(B) = O(n). If B = ω is
a symplectic form then Aut(B) = Sp(2n,R), the symplectic group. If our bilinear
form is

B(x, y) = x1y1 + · · ·+ xpyp − xp+1yp+1 − · · · − xp+qyp+q

on Rp+q then Aut(B) = O(p, q), and in the special case of R3,1 Aut(B) = O(3, 1)
is the Lorentz group. The above holds for sesquilinear forms too; so, for example,
if B is the complex inner product on Cn then we get Aut(B) = U(n).

How do elements of Aut(B) look in coordinates? The condition that A∗B = B
gives us

B(x, y) = B(Ax,Ay) = B(x,A†Ay) =⇒ B(x, (Id−A†A)y) = 0

we get from non-degeneracy that if A∗B = B then A†A = Id. Let’s choose a basis
E1, . . . , En for V and define Q = (B(Ei, Ej)). So if A is a B-automorphism then
we can compute

A†A = Id =⇒ Q−1AtQA = Id.

Theorem 2.2. An automorphism A is a B-automorphism if and only if AtQA =
Q.

Proof. We have just seen necessity. For sufficiency we compute

B(Ax,Ay) = A [x] ·QA [y] = [x] ·AtQA [y] = [x] ·Q [y] = B(x, y).

So A∗B = B as desired.
�

As a quick example, if we have the dot product then our matrix Q = Id so A is
an orthogonal transformation if and only if AtA = Id.


