BILINEAR FORMS AND THE ADJOINT OF A LINEAR MAP

KEATON QUINN

1. The Adjoint of a linear map

Let V be a real vector space and V^* its dual. Suppose we have a linear map $\varphi : V \to V^*$, then we can define a bilinear form on V by $B(x, y) = \varphi(x)(y)$. Conversely, given a bilinear form we can define a mapping from $V \to V^*$ by $\varphi(x) = B(\cdot, x)$. We say a bilinear form is non-degenerate if the associated φ is injective. For a finite dimensional vector space, if we have a non-degenerate bilinear form, then we have a canonical identification of V with its dual space $V \cong V^*$ via the associated map φ .

Now, given two vector spaces V and W and a linear map $A: V \to W$ between them, we have an associated map $A^*: W^* \to V^*$, called the dual of A, which pulls back functionals to X. That is, A^* is defined by $A^*(f) = f \circ A$ for $f \in W^*$. However, if we have non-degenerate bilinear forms on both V and W we get isomorphisms $\varphi: V \to V^*$ and $\psi: W \to W^*$. How does A^* behave under these identifications? We have the diagram below; define $A^{\dagger} = \varphi^{-1} \circ A^* \circ \psi$ so that it commutes. As we'll see, the operator A^{\dagger} will be the adjoint (with respect to the bilinear forms).

Theorem 1.1. Let B_V and B_W be non-degenerate bilinear forms on V and W respectively. Define $A^{\dagger} = \varphi^{-1} \circ A^* \circ \psi$, where φ and ψ are the isomorphisms associated to the bilinear forms. Then for $v \in V$ and $w \in W$

$$B_W(Av, w) = B_V(v, A^{\dagger}w)$$

Proof. The definition of A^{\dagger} can be rewritten as commutativity of the above diagram: $A^* \circ \psi = \varphi \circ A^{\dagger}$. Take $w \in W$,

$$\psi(w) \circ A = A^*(\psi(w)) = (A^* \circ \psi)(w)$$
$$= (\varphi \circ A^{\dagger})(w) = \varphi(A^{\dagger}w).$$

Now evaluate on $v \in V$:

$$B_W(Av, w) = \psi(w)(Av) = (\psi(w) \circ A)(v)$$
$$= \varphi(A^{\dagger}w)(v) = B_V(v, A^{\dagger}w),$$

Last Revised: December 21, 2018.

as desired.

Can we find the representation of A^{\dagger} in coordinates? Indeed we can. Let's first fine the matrix representation of the map φ associated to a bilinear form B with respect to a basis E_1, \ldots, E_n for V and the dual basis E_1^*, \ldots, E_n^* for V^* .

Lemma 1.2. The matrix representation of φ in the basis E_1, \ldots, E_n and the corresponding dual basis is $[\varphi] = (B(E_i, E_j))$.

Proof. We can compute

$$\varphi(E_j) = \sum_{i=1}^n \varphi_{ij} E_i^*$$

and so $B(E_i, E_j) = \varphi(E_j)(E_i) = \varphi_{ij}$.

This $[\varphi]$ is called the matrix representation of B and will will now denote it by $Q = (q_{ij}) = (B(E_i, E_j))$. An immediate consequence of this is that Q is an invertible matrix since φ is an isomorphism. The following lemma provides a useful expression for a bilinear form in coordinates.

Lemma 1.3. If E_1, \ldots, E_n is a basis for V and $q_{ij} = B(E_i, E_j)$ then for $Q = (q_{ij})$ we have

$$B(x, y) = [x] \cdot Q[y],$$

where $[\cdot]$ is the coordinate representation with respect to the relevant basis.

Proof. This follows from computation: write $x = \sum_i x^i E_i$ and $y = \sum_j y^j E_j$, then

$$B(x,y) = B\left(\sum_{i=1}^{n} x^{i} E_{i}, \sum_{j=1}^{n} y^{j} E_{j}\right) = \sum_{i,j=1}^{n} x^{i} y^{j} B(E_{i}, E_{j}) = \sum_{i,j=1}^{n} x^{i} y^{j} q_{ij}.$$

However,

$$Q[y] = \sum_{j,k=1}^{n} y^{j} q_{kj} [E_k]$$

so that

$$[x] \cdot Q[y] = \sum_{k,j=1}^{n} x^{i} y^{j} q_{kj} [E_{i}] \cdot [E_{k}] = \sum_{i,j=1}^{n} x^{i} y^{j} q_{ij}$$

since the coordinate representations of the E_i are orthogonal.

The preceeding arguments all work for W with its bilinear form. We can now compute the coordinate representation of the adjoint A^{\dagger} . First we do the simple case of \mathbb{R}^n with the dot product. Here the adjoint is the transpose.

Lemma 1.4. Let $A : \mathbb{R}^n \to \mathbb{R}^n$ be linear, then in the standard basis we have $[A^{\dagger}] = [A]^t$.

Proof. We note for a linear map L that $L_{ij} = e_i \cdot Le_j$. Therefore,

$$A_{ij}^{\dagger} = e_i \cdot A^{\dagger} e_j = A e_i \cdot e_j = e_j \cdot A e_i = A_{ji}.$$

Now, for the general case.

 $\mathbf{2}$

Theorem 1.5. In a basis E_1, \ldots, E_n for V and F_1, \ldots, F_m for W, the adjoint A^{\dagger} has the representation

$$[A^{\dagger}] = Q^{-1}[A]^t P,$$

where Q and P are the matrix representations of B_V and B_W , respectively.

Proof. We have from the previous lemmas that

$$[v] \cdot Q [A^{\dagger}] [w] = B_V(v, A^{\dagger}w)$$

= $B_W(Av, w) = [A] [v] \cdot P [w] = [v] \cdot [A]^t P [w].$

This is true for all v and w, so $Q[A^{\dagger}] = [A]^t P$ and the result follows.

This was all under the assumption that our vector spaces were real. Adjoints on a complex vector space typically include conjugation; for example, a complex inner product is not bilinear but hermitian. Hence we don't usually have a canonical isomorphism between our vector spaces and their duals. More care is needed in this case.

2. Automorphism of bilinear forms

Let V and W be two vector spaces with non-degenerate bilinear forms B_V and B_W , respectively. What are morphisms between spaces like this? That is, what are the functions $f: V \to W$ that respect the bilinear forms?

Theorem 2.1. Let $f: V \to W$ be a surjective function such that

$$B_W(f(x), f(y)) = B_V(x, y),$$

then f is linear and an isomorphism.

Proof. We compute

$$B_W(f(\alpha x + \beta y) - \alpha f(x) - \beta f(y), w)$$

= $B_W(f(\alpha x + \beta y), w) - \alpha B_W(f(x), w) - \beta B_W(f(y), w).$

Since f is surjective, there is a $z \in V$ such that f(z) = w. So our calculation becomes

$$B_W(f(\alpha x + \beta y) - \alpha f(x) - \beta f(y), w)$$

= $B_W(f(\alpha x + \beta y), f(z)) - \alpha B_W(f(x), f(z)) - \beta B_W(f(y), f(z))$
= $B_V(\alpha x + \beta y, z) - \alpha B_V(x, z) - \beta B_V(y, z)$
= 0.

Since this is zero for all w, by non-degeneracy we get

$$f(\alpha x + \beta y) - \alpha f(x) - \beta f(y) = 0.$$

So f is linear. It is already surjective so if we can show it's injective it will be an isomorphism. But this follows from similar reasoning: suppose f(x) = 0, then

$$B_V(x, z) = B_W(f(x), f(z)) = 0.$$

Since this is true for all z we get x = 0 by non-degeneracy.

KEATON QUINN

The previous Theorem allows us to restrict our attention to linear isomomorphisms. We define the pullback of a bilinear form B similarly to how we defined the dual of a linear map. That is, if $A: V \to W$ is linear then we get a map $A^*: W^* \otimes W^* \to V^* \otimes V^*$ by $A^*B(x, y) = B(A(x), A(y))$.

Let's specialize to V = W and $B_V = B_W = B$. Define Aut(B) to be

$$Aut(B) = \{A : V \to V \mid A^*B = B\} = \{A : V \to V \mid B(A(\cdot), A(\cdot)) = B(\cdot, \cdot)\},\$$

the set of all *B*-automorphisms of *V*. Since $Id \in Aut(B)$ and $A \in Aut(B)$ implies $A^{-1} \in Aut(B)$ we get Aut(B) is a group under composition. So $Aut(B) \leq Aut(V)$.

If we take B to be the dot product on \mathbb{R}^n then $\operatorname{Aut}(B) = O(n)$. If $B = \omega$ is a symplectic form then $\operatorname{Aut}(B) = Sp(2n, \mathbb{R})$, the symplectic group. If our bilinear form is

$$B(x,y) = x_1y_1 + \dots + x_py_p - x_{p+1}y_{p+1} - \dots - x_{p+q}y_{p+q}$$

on \mathbb{R}^{p+q} then $\operatorname{Aut}(B) = O(p,q)$, and in the special case of $\mathbb{R}^{3,1}$ $\operatorname{Aut}(B) = O(3,1)$ is the Lorentz group. The above holds for sesquilinear forms too; so, for example, if B is the complex inner product on \mathbb{C}^n then we get $\operatorname{Aut}(B) = U(n)$.

How do elements of $\operatorname{Aut}(B)$ look in coordinates? The condition that $A^*B = B$ gives us

$$B(x,y) = B(Ax,Ay) = B(x,A^{\dagger}Ay) \implies B(x,(Id - A^{\dagger}A)y) = 0$$

we get from non-degeneracy that if $A^*B = B$ then $A^{\dagger}A = Id$. Let's choose a basis E_1, \ldots, E_n for V and define $Q = (B(E_i, E_j))$. So if A is a B-automorphism then we can compute

$$A^{\dagger}A = Id \implies Q^{-1}A^{t}QA = Id.$$

Theorem 2.2. An automorphism A is a B-automorphism if and only if $A^tQA = Q$.

Proof. We have just seen necessity. For sufficiency we compute

$$B(Ax, Ay) = A[x] \cdot QA[y] = [x] \cdot A^{t}QA[y] = [x] \cdot Q[y] = B(x, y).$$

So $A^*B = B$ as desired.

As a quick example, if we have the dot product then our matrix Q = Id so A is an orthogonal transformation if and only if $A^tA = Id$.