BILINEAR FORMS AND THE ADJOINT OF A LINEAR MAP

KEATON QUINN

1. THE ADJOINT OF A LINEAR MAP

Let V be a real vector space and V* its dual. Suppose we have a linear map ¢ :
V — V*, then we can define a bilinear form on V' by B(x,y) = ¢(x)(y). Conversely,
given a bilinear form we can define a mapping from V' — V* by o(z) = B(-,z). We
say a bilinear form is non-degenerate if the associated ¢ is injective. For a finite
dimensional vector space, if we have a non-degenerate bilinear form, then we have
a canonical identification of V' with its dual space V = V* via the associated map
®.

Now, given two vector spaces V and W and a linear map A : V. — W between
them, we have an associated map A* : W* — V*, called the dual of A, which pulls
back functionals to X. That is, A* is defined by A*(f) = foA for f € W*. However,
if we have non-degenerate bilinear forms on both V and W we get isomorphisms
w:V = V*and ¢ : W — W*. How does A* behave under these identifications?
We have the diagram below; define AT = =10 A* 04} so that it commutes. As we’ll
see, the operator AT will be the adjoint (with respect to the bilinear forms).

W S V4

(2 ®

AT
W --=--- 2%

Theorem 1.1. Let By and By be non-degenerate bilinear forms on V. and W
respectively. Define AT = ¢~ o A* o 1), where ¢ and 1 are the isomorphisms
associated to the bilinear forms. Then forv eV and w e W

By (Av,w) = By (v, ATw)

Proof. The definition of AT can be rewritten as commutativity of the above diagram:
A*orp = po Al. Take w € W,

P(w) o A= A*(p(w)) = (A" 0 ) (w)
— (g0 AN (w) = p(Atw).
Now evaluate on v € V:
Bw (Av, w) = 1h(w)(Av) = (Y (w) 0 A)(v)
= p(ATw)(v) = By (v, Alw),

Last Revised: December 21, 2018.



2 KEATON QUINN

as desired. 0

Can we find the representation of Af in coordinates? Indeed we can. Let’s first
fine the matrix representation of the map ¢ associated to a bilinear form B with
respect to a basis Fi,..., E, for V and the dual basis E7,..., E} for V*.

Lemma 1.2. The matriz representation of ¢ in the basis E1, ..., E, and the cor-
responding dual basis is [p] = (B(E;, Ej)).

Proof. We can compute
0(Bj) = @i B
i=1
and so B(E;, Ej) = ¢(Ej)(E:) = ¢ij. 0

This [p] is called the matrix representation of B and will will now denote it
by @ = (¢i;) = (B(E;, E;)). An immediate consequence of this is that @ is an
invertible matrix since ¢ is an isomorphism. The following lemma provides a useful
expression for a bilinear form in coordinates.

Lemma 1.3. If £y, ..., E, is a basis for V and ¢;; = B(E;, E;) then for Q = (¢;5)
we have

B(x,y) = [z]-Qyl,

where [-] is the coordinate representation with respect to the relevant basis.

Proof. This follows from computation: write x =, 2'E; and y = y y/E;, then

B(z,y) =B zn:miEi,iijj = z": vy B(E;, E;) = z": 'yl ;.
i=1 j=1

ij=1 i,j=1
However,
Qlyl= > vVak; [Ex]
Jrk=1
so that
2] QU = Y @'y an (B [Bx] = ) o'y
k,j=1 i,j=1

since the coordinate representations of the E; are orthogonal.
|

The preceeding arguments all work for W with its bilinear form. We can now
compute the coordinate representation of the adjoint A'. First we do the simple
case of R™ with the dot product. Here the adjoint is the transpose.

Lemma 1.4. Let A : R™ — R" be linear, then in the standard basis we have
[AT] = [A]".

Proof. We note for a linear map L that L;; = e; - Le;. Therefore,

A;fj = €; -ATej = Aei . ej = ej . Aei = Aﬂ

Now, for the general case.
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Theorem 1.5. In a basis E1, ..., E, forV and F,..., F,, for W, the adjoint At
has the representation
[AT] = Q7 '[A]P,

where @ and P are the matriz representations of By and By, respectively.

Proof. We have from the previous lemmas that
[v] - @ [A"] [w] = By (v, A'w)
= Bw (Av,w) = [A][v] - Pw] = [v] - [A]" P [uw].
This is true for all v and w, so @ [AT] = [A]" P and the result follows.
O

This was all under the assumption that our vector spaces were real. Adjoints on
a complex vector space typically include conjugation; for example, a complex inner
product is not bilinear but hermitian. Hence we don’t usually have a canonical
isomorphism between our vector spaces and their duals. More care is needed in
this case.

2. AUTOMORPHISM OF BILINEAR FORMS

Let V and W be two vector spaces with non-degenerate bilinear forms By and
By, respectively. What are morphisms between spaces like this? That is, what are
the functions f : V' — W that respect the bilinear forms?

Theorem 2.1. Let f: V — W be a surjective function such that

then f is linear and an isomorphism.

Proof. We compute

Bw (f(az + By) — af(z) — Bf(y), w)
= Bw (f(oz + By),w) — aBw (f(2),w) — BBw (f(y), w).

Since f is surjective, there is a z € V such that f(z) = w. So our calculation
becomes

Bw (f(ax + By) — af (x) = Bf(y), w)
= Bw (f(az + By), f(2)) — aBw (f(x), f(2)) — BBw (f(y), f(2))
= By (ax + By, z) — aBy(z,z) — By (y, 2)
=0.
Since this is zero for all w, by non-degeneracy we get
flaz + By) —af(z) — Bf(y) = 0.

So f is linear. It is already surjective so if we can show it’s injective it will be an
isomorphism. But this follows from similar reasoning: suppose f(x) = 0, then

By (z,2) = Bw(f(2), f(2)) = 0.

Since this is true for all z we get = 0 by non-degeneracy.



4 KEATON QUINN

The previous Theorem allows us to restrict our attention to linear isomomor-
phisms. We define the pullback of a bilinear form B similarly to how we defined
the dual of a linear map. That is, if A : V — W is linear then we get a map
A W*@W* - V*@V* by A*B(z,y) = B(A(x), A(y)).

Let’s specialize to V. =W and By = By = B. Define Aut(B) to be
Au(B)={A: V>V | A*B=B}={A:V >V | B(A(),A(:)) = B(-, ")},
the set of all B-automorphisms of V. Since Id € Aut(B) and A € Aut(B) implies
A~1 € Aut(B) we get Aut(B) is a group under composition. So Aut(B) < Aut(V).

If we take B to be the dot product on R™ then Aut(B) = O(n). If B = w is
a symplectic form then Aut(B) = Sp(2n,R), the symplectic group. If our bilinear
form is

B($, y) =T1Y1+ -+ TpYp — Tp+1Yp+1 — ° — Tp+qYptq
on RPT? then Aut(B) = O(p,q), and in the special case of R*! Aut(B) = O(3,1)
is the Lorentz group. The above holds for sesquilinear forms too; so, for example,
if B is the complex inner product on C™ then we get Aut(B) = U(n).

How do elements of Aut(B) look in coordinates? The condition that A*B = B
gives us

B(z,y) = B(Az, Ay) = B(z, ATAy) =  B(z,(Id— ATA)y) =0

we get from non-degeneracy that if A*B = B then ATA = Id. Let’s choose a basis
E.,...,E, for V and define Q = (B(E;, E;)). So if A is a B-automorphism then
we can compute

ATA=1d = Q'A'QA=1Id

Theorem 2.2. An automorphism A is a B-automorphism if and only if AQA =
Q.
Proof. We have just seen necessity. For sufficiency we compute

B(Az, Ay) = Ala]- QA[y] =[] - A'QA[y] =[] - Q [y] = B(=,y).

So A*B = B as desired.
O

As a quick example, if we have the dot product then our matrix QQ = Id so A is
an orthogonal transformation if and only if A*A = Id.



