BILINEAR FORMS AND THE ADJOINT OF A LINEAR MAP

KEATON QUINN

1. The Adjoint of a linear map

Let V be a real vector space and V^{*} its dual. Suppose we have a linear map φ : $V \rightarrow V^{*}$, then we can define a bilinear form on V by $B(x, y)=\varphi(x)(y)$. Conversely, given a bilinear form we can define a mapping from $V \rightarrow V^{*}$ by $\varphi(x)=B(\cdot, x)$. We say a bilinear form is non-degenerate if the associated φ is injective. For a finite dimensional vector space, if we have a non-degenerate bilinear form, then we have a canonical identification of V with its dual space $V \cong V^{*}$ via the associated map φ.

Now, given two vector spaces V and W and a linear map $A: V \rightarrow W$ between them, we have an associated map $A^{*}: W^{*} \rightarrow V^{*}$, called the dual of A, which pulls back functionals to X. That is, A^{*} is defined by $A^{*}(f)=f \circ A$ for $f \in W^{*}$. However, if we have non-degenerate bilinear forms on both V and W we get isomorphisms $\varphi: V \rightarrow V^{*}$ and $\psi: W \rightarrow W^{*}$. How does A^{*} behave under these identifications? We have the diagram below; define $A^{\dagger}=\varphi^{-1} \circ A^{*} \circ \psi$ so that it commutes. As we'll see, the operator A^{\dagger} will be the adjoint (with respect to the bilinear forms).

Theorem 1.1. Let B_{V} and B_{W} be non-degenerate bilinear forms on V and W respectively. Define $A^{\dagger}=\varphi^{-1} \circ A^{*} \circ \psi$, where φ and ψ are the isomorphisms associated to the bilinear forms. Then for $v \in V$ and $w \in W$

$$
B_{W}(A v, w)=B_{V}\left(v, A^{\dagger} w\right)
$$

Proof. The definition of A^{\dagger} can be rewritten as commutativity of the above diagram: $A^{*} \circ \psi=\varphi \circ A^{\dagger}$. Take $w \in W$,

$$
\begin{aligned}
\psi(w) \circ A=A^{*}(\psi(w)) & =\left(A^{*} \circ \psi\right)(w) \\
& =\left(\varphi \circ A^{\dagger}\right)(w)=\varphi\left(A^{\dagger} w\right)
\end{aligned}
$$

Now evaluate on $v \in V$:

$$
\begin{aligned}
B_{W}(A v, w)=\psi(w)(A v) & =(\psi(w) \circ A)(v) \\
& =\varphi\left(A^{\dagger} w\right)(v)=B_{V}\left(v, A^{\dagger} w\right)
\end{aligned}
$$

Last Revised: December 21, 2018.
as desired.
Can we find the representation of A^{\dagger} in coordinates? Indeed we can. Let's first fine the matrix representation of the map φ associated to a bilinear form B with respect to a basis E_{1}, \ldots, E_{n} for V and the dual basis $E_{1}^{*}, \ldots, E_{n}^{*}$ for V^{*}.

Lemma 1.2. The matrix representation of φ in the basis E_{1}, \ldots, E_{n} and the corresponding dual basis is $[\varphi]=\left(B\left(E_{i}, E_{j}\right)\right)$.

Proof. We can compute

$$
\varphi\left(E_{j}\right)=\sum_{i=1}^{n} \varphi_{i j} E_{i}^{*}
$$

and so $B\left(E_{i}, E_{j}\right)=\varphi\left(E_{j}\right)\left(E_{i}\right)=\varphi_{i j}$.
This $[\varphi]$ is called the matrix representation of B and will will now denote it by $Q=\left(q_{i j}\right)=\left(B\left(E_{i}, E_{j}\right)\right)$. An immediate consequence of this is that Q is an invertible matrix since φ is an isomorphism. The following lemma provides a useful expression for a bilinear form in coordinates.

Lemma 1.3. If E_{1}, \ldots, E_{n} is a basis for V and $q_{i j}=B\left(E_{i}, E_{j}\right)$ then for $Q=\left(q_{i j}\right)$ we have

$$
B(x, y)=[x] \cdot Q[y],
$$

where [•] is the coordinate representation with respect to the relevant basis.
Proof. This follows from computation: write $x=\sum_{i} x^{i} E_{i}$ and $y=\sum_{j} y^{j} E_{j}$, then

$$
B(x, y)=B\left(\sum_{i=1}^{n} x^{i} E_{i}, \sum_{j=1}^{n} y^{j} E_{j}\right)=\sum_{i, j=1}^{n} x^{i} y^{j} B\left(E_{i}, E_{j}\right)=\sum_{i, j=1}^{n} x^{i} y^{j} q_{i j}
$$

However,

$$
Q[y]=\sum_{j, k=1}^{n} y^{j} q_{k j}\left[E_{k}\right]
$$

so that

$$
[x] \cdot Q[y]=\sum_{k, j=1}^{n} x^{i} y^{j} q_{k j}\left[E_{i}\right] \cdot\left[E_{k}\right]=\sum_{i, j=1}^{n} x^{i} y^{j} q_{i j}
$$

since the coordinate representations of the E_{i} are orthogonal.

The preceeding arguments all work for W with its bilinear form. We can now compute the coordinate representation of the adjoint A^{\dagger}. First we do the simple case of \mathbb{R}^{n} with the dot product. Here the adjoint is the transpose.

Lemma 1.4. Let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be linear, then in the standard basis we have $\left[A^{\dagger}\right]=[A]^{t}$.

Proof. We note for a linear map L that $L_{i j}=e_{i} \cdot L e_{j}$. Therefore,

$$
A_{i j}^{\dagger}=e_{i} \cdot A^{\dagger} e_{j}=A e_{i} \cdot e_{j}=e_{j} \cdot A e_{i}=A_{j i}
$$

Now, for the general case.

Theorem 1.5. In a basis E_{1}, \ldots, E_{n} for V and F_{1}, \ldots, F_{m} for W, the adjoint A^{\dagger} has the representation

$$
\left[A^{\dagger}\right]=Q^{-1}[A]^{t} P
$$

where Q and P are the matrix representations of B_{V} and B_{W}, respectively.
Proof. We have from the previous lemmas that

$$
\begin{aligned}
{[v] \cdot Q\left[A^{\dagger}\right][w] } & =B_{V}\left(v, A^{\dagger} w\right) \\
& =B_{W}(A v, w)=[A][v] \cdot P[w]=[v] \cdot[A]^{t} P[w]
\end{aligned}
$$

This is true for all v and w, so $Q\left[A^{\dagger}\right]=[A]^{t} P$ and the result follows.

This was all under the assumption that our vector spaces were real. Adjoints on a complex vector space typically include conjugation; for example, a complex inner product is not bilinear but hermitian. Hence we don't usually have a canonical isomorphism between our vector spaces and their duals. More care is needed in this case.

2. Automorphism of bilinear forms

Let V and W be two vector spaces with non-degenerate bilinear forms B_{V} and B_{W}, respectively. What are morphisms between spaces like this? That is, what are the functions $f: V \rightarrow W$ that respect the bilinear forms?

Theorem 2.1. Let $f: V \rightarrow W$ be a surjective function such that

$$
B_{W}(f(x), f(y))=B_{V}(x, y)
$$

then f is linear and an isomorphism.
Proof. We compute

$$
\begin{aligned}
B_{W}(f(\alpha x+\beta y) & -\alpha f(x)-\beta f(y), w) \\
& =B_{W}(f(\alpha x+\beta y), w)-\alpha B_{W}(f(x), w)-\beta B_{W}(f(y), w)
\end{aligned}
$$

Since f is surjective, there is a $z \in V$ such that $f(z)=w$. So our calculation becomes

$$
\begin{aligned}
B_{W}(f(\alpha x+\beta y) & -\alpha f(x)-\beta f(y), w) \\
& =B_{W}(f(\alpha x+\beta y), f(z))-\alpha B_{W}(f(x), f(z))-\beta B_{W}(f(y), f(z)) \\
& =B_{V}(\alpha x+\beta y, z)-\alpha B_{V}(x, z)-\beta B_{V}(y, z) \\
& =0
\end{aligned}
$$

Since this is zero for all w, by non-degeneracy we get

$$
f(\alpha x+\beta y)-\alpha f(x)-\beta f(y)=0
$$

So f is linear. It is already surjective so if we can show it's injective it will be an isomorphism. But this follows from similar reasoning: suppose $f(x)=0$, then

$$
B_{V}(x, z)=B_{W}(f(x), f(z))=0
$$

Since this is true for all z we get $x=0$ by non-degeneracy.

The previous Theorem allows us to restrict our attention to linear isomomorphisms. We define the pullback of a bilinear form B similarly to how we defined the dual of a linear map. That is, if $A: V \rightarrow W$ is linear then we get a map $A^{*}: W^{*} \otimes W^{*} \rightarrow V^{*} \otimes V^{*}$ by $A^{*} B(x, y)=B(A(x), A(y))$.

Let's specialize to $V=W$ and $B_{V}=B_{W}=B$. Define $\operatorname{Aut}(B)$ to be

$$
\operatorname{Aut}(B)=\left\{A: V \rightarrow V \mid A^{*} B=B\right\}=\{A: V \rightarrow V \mid B(A(\cdot), A(\cdot))=B(\cdot, \cdot)\},
$$

the set of all B-automorphisms of V. Since $I d \in \operatorname{Aut}(B)$ and $A \in \operatorname{Aut}(B)$ implies $A^{-1} \in \operatorname{Aut}(B)$ we get $\operatorname{Aut}(B)$ is a group under composition. So $\operatorname{Aut}(B) \leq \operatorname{Aut}(V)$.

If we take B to be the dot product on \mathbb{R}^{n} then $\operatorname{Aut}(B)=O(n)$. If $B=\omega$ is a symplectic form then $\operatorname{Aut}(B)=S p(2 n, \mathbb{R})$, the symplectic group. If our bilinear form is

$$
B(x, y)=x_{1} y_{1}+\cdots+x_{p} y_{p}-x_{p+1} y_{p+1}-\cdots-x_{p+q} y_{p+q}
$$

on \mathbb{R}^{p+q} then $\operatorname{Aut}(B)=O(p, q)$, and in the special case of $\mathbb{R}^{3,1} \operatorname{Aut}(B)=O(3,1)$ is the Lorentz group. The above holds for sesquilinear forms too; so, for example, if B is the complex inner product on \mathbb{C}^{n} then we get $\operatorname{Aut}(B)=U(n)$.

How do elements of $\operatorname{Aut}(B)$ look in coordinates? The condition that $A^{*} B=B$ gives us

$$
B(x, y)=B(A x, A y)=B\left(x, A^{\dagger} A y\right) \quad \Longrightarrow \quad B\left(x,\left(I d-A^{\dagger} A\right) y\right)=0
$$

we get from non-degeneracy that if $A^{*} B=B$ then $A^{\dagger} A=I d$. Let's choose a basis E_{1}, \ldots, E_{n} for V and define $Q=\left(B\left(E_{i}, E_{j}\right)\right)$. So if A is a B-automorphism then we can compute

$$
A^{\dagger} A=I d \quad \Longrightarrow \quad Q^{-1} A^{t} Q A=I d
$$

Theorem 2.2. An automorphism A is a B-automorphism if and only if $A^{t} Q A=$ Q.

Proof. We have just seen necessity. For sufficiency we compute

$$
B(A x, A y)=A[x] \cdot Q A[y]=[x] \cdot A^{t} Q A[y]=[x] \cdot Q[y]=B(x, y)
$$

So $A^{*} B=B$ as desired.

As a quick example, if we have the dot product then our matrix $Q=I d$ so A is an orthogonal transformation if and only if $A^{t} A=I d$.

